Scientific Reports volume 12、記事番号: 15119 (2022) この記事を引用
746 アクセス
1 引用
メトリクスの詳細
この研究では、土壌およびエンバク植物中の窒素、リン、カリウム(NPK)濃度、エンバク収量、土壌中の有機物などのいくつかのパラメータの変化に基づいて、さまざまな濃度のセレン(Se)の葉面散布の効果が検査されました。土壌 (OMS)、非酵素的酸化防止剤、および総フェノール含有量。 オーツ麦わらと種子中のクロム (Cr)、鉄 (Fe)、マンガン (Mn)、亜鉛 (Zn)、および銅 (Cu) の濃度も評価されました。 この研究は地域および国のガイドラインに準拠しています。 この研究では、フミン酸カリウム (K-フミン酸塩) と Se の同時適用も調査されました。 Se の施用により、土壌中の N と P の生物学的利用能が増加し、各植物のわらと種子中のそれらの総濃度が増加しました。 Se 濃度は土壌 (P 土壌) に含まれるリンの量に比例しましたが、種子中の K 濃度 (K 植物) には比例しませんでした。 フミン酸カリウムとセレンを併用すると、カリウム土壌の生物学的に利用可能な割合が増加しました。 ただし、K ストローまたは K シードの生物学的に利用可能な部分は増加しませんでした。 Se 単独の適用は収率を大幅に向上させましたが、K-フミン酸塩の同時適用は追加の効果を示さなかった。 さらに、種子収量と植物の長さの反応は、K-フミン酸塩の有無にかかわらず Se を施用した後では有意ではありませんでした。 OMS と総フェノール含有量は、K-フミン酸塩の有無にかかわらず Se の適用率に比例しました。 非酵素的抗酸化物質の含有量も Se 濃度に比例しましたが、フミン酸 K には比例しませんでした。 土壌、植物わら、種子中の総 Se 濃度は、フミン酸 K の添加により増加しました。 さらに、総 Cr 濃度は、Se およびフミン酸 K の適用後に減少しました。 藁と種子中の Fe 濃度は処理ごとに異なり、Mn 濃度は Se とフミン酸カリウムの葉面散布に応じて減少した。 植物の藁と種子中の亜鉛濃度は、さまざまな濃度の Se を適用すると減少しました。 Se の施用量を増やすと、種子中の Cu 濃度の減少が引き起こされました。 対照的に、Se とフミン酸 K を同時に施用すると、種子内の Cu 濃度が増加しました。
セレン (Se) の研究は、シュワルツとフォルツが飼料中のセレンがラットの肝硬変と筋ジストロフィーを予防することを発見したときに始まりました1。 Se は、その抗酸化作用と抗がん作用に基づいて、植物内で抗酸化物質として作用するなど、さまざまな機能を持っています2。
植物の成長は土壌中のセレン濃度には依存しません。 しかし、人間の食品や動物の飼料中のセレン濃度は健康に重要な影響を及ぼします3。 必須の栄養要件を満たす Se 濃度と有毒な Se 濃度の間の境界は狭く、化学的形態と環境条件の影響を受けます2。 Seは、紫外線誘発酸化ストレスに耐える植物の能力を改変し、老化した苗の成長を促進し、老化を遅らせる可能性があります。 Se ナノ粒子 (SeNP) は、光合成色素、総可溶性糖、抗酸化酵素 (アスコルビン酸ペルオキシダーゼ、カタラーゼ、ペルオキシダーゼ)、フェノール含有量、総フラボノイド、および脂質過酸化を変化させることにより、ラッカセイ品種の成長に影響を与えました。 対照的に、砂質土壌条件では、ストレス因子または刺激剤として SeNP を適用した後、植物の耐性が強化されました 4。 Se の適用により、光化学効率に対するマイナスの塩分効果も逆転しました2。 Se 添加剤の適用により、重金属、熱、紫外線 (UV)-B、寒さ、塩分ストレス、干ばつによって引き起こされる有害反応の発生が減少しました5。
フミン酸カリウム (KHM) やフルボ酸カリウム (BSFA) などの有機肥料は、植物の病気を予防し、土壌構造を改善し、土壌栄養レベルを高めるために使用されます6。 KHM と BSFA の添加により、高麗人参土壌の微生物の機能と栄養素レベルが再形成されることが判明しました6。 さらに、KHM の適用により、種子の発芽、栄養素の摂取、および苗の成長が強化されました7。
Se2 > Se1 > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used./p> Se2 > Se1 > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments./p> Se2 > Se1 > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect./p> Se2 > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM./p> Se2 > Se1 > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24./p> Se2 > Se1 > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings./p> Se2 > Se1 > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20./p> Se2 > Se1 > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3 > Se2 > Se1 > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis./p> Se3 > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control > Se3 > Se2 > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2 > Se3 > Se2 > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences./p> Se1 > control > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control > Se3 > Se2 > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21./p> Se2 > Se1 > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control > Se1 > Se3 > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control > Se2 > Se3 > Se1. K-humate addition altered this order to be in the following order: control > Se2 > Se1 > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21./p> Se1 > control > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control > Se3 > Se1 > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25./p> control > Se2 > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3 > Se1 > control > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21./p> Se1 > control > Se3. Concentrations of Zn in oat seeds were reduced by Se supplementation. Increases in Se concentrations from 12 × 10−3 to 88 × 10−3 mM reduced Cu-seed, and Se application with K-humate produced only insignificant increases in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. The additional application of K-humate altered this order to Se3 > Se1 > control > Se2./p>